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SUMMARY

A recent study by Needham, Riley and Smith of a jet emerging from a circular

pipe into a weak cross-flow under the assumptions of an inviscid and incompress-

ible fluid led to expressions for the velocity potential in different regions

near the orifice as definite integrals and infinite sums. In the present paper

the expressions relating to flow inside the pipe and jet are evaluated with great

care. It is confirmed that the solutions in the pipe and jet are continuous across

the orifice plane. The behaviour of the solution near the orifice is displayed

in graphical form, with emphasis on the consequences of the failure to satisfy

a Kutta condition of smooth outflow at the lip. Accesslon For
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I INTRODUCTION

Needham, Riley and Smith present an analysis of an idealized form of the

jet-in-crossflow problem. The flow is assumed to be inviscid and incompressible.

A jet emerges from a semi-infinite pipe in the shape of a circular cylinder into

an ambient flow whose component normal to the pipe axis is small compared with

the jet speed. The configuration is illustrated in Fig I. The flow is

irrotational both inside and outside the jet boundary, which forms a vortex

sheet. This sheet is assumed to lie close to the circular cylinder defined by

extending the pipe, so that the conditions of tangential flow and continuity of

pressure which are satisfied on the jet boundary can be transferred to the

cylinder.

The solution obtained is in two parts, corresponding to different length

scales. If the ratio of the cross-flow velocity component to the jet speed is

e << I , and the pipe radius is a , the first part of the solution, correspond-

ing to a length scale of a/c , is obtained as the first few terms of a power

series in cx , where x - i/a and x is the distance from the exit plane.

The second part, on a length scale of a , matches the first part to conditions

at the pipe exit. This is obtained by the Wiener-Hopf technique, which leads

to involved expressions for the velocity potential in distinct regions, viz

inside the pipe, inside the jet, outside the jet and outside the pipe.

These expressions are so elaborate that there is no obvious way to confirm

analytically that they satisfy the required conditions of continuity across the

boundaries of the regions. Nor is it possible to deduce any quantitative

information about the solution by inspection. Since there is at present very

little known, in a mathematical sense, about the behaviour of jets in cross-flow,

it seems worth investigating the behaviour of this model, physically unrealistic

though it be. Accordingly, an attempt has been made to evaluate numerically the

expressions obtained, first to confirm that the appropriate quantities are indeed

continuous, and then to display the quantitative nature of the solution near to

the pipe orifice.

It emerges that the numerical evaluation is far from straightforward; the
typical task is to evaluate an integral, over an irfinite range, of products of

quasi-periodic functions (changing sign infinitely often) and a function which

is itself defined by a further integration. For the particular case in which the

0 coflowing component of the ambient stream is equal to the jet velocity, ie X

in Fig 1, one of the quasi-periodic functions reduces to a form which is more

14
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amenable to numerical integration, and so the present exercise has been confined

to this case. The restriction to X - 1 does remove some of the physical con-

tent of the problem, in particular implying that the inclination of the jet to

the ambient stream, tan- (/X) , is small. Nonetheless, the particular case is

believed to provide an adequate test of the analysis and a useful indication of

the behaviour of the solution. Even for this case, considerable care and

appreciable computing time are required, so it is thought worthwhile to place

the methods and the results on record.

2 SUMMARY OF THE ANALYTIC SOLUTION NEAR THE ORIFICE

In Ref 1 is discussed the situation of an incompressible, inviscid fluid

emerging with unit average speed from a long straight pipe of circular cross-

section with unit radius. (So velocities and distances are scaled on pipe flow

speed and pipe radius.) The jet emerges into a stream of similar fluid which

has undisturbed velocity components A parallel to the pipe and e perpendicular

to it, as indicated in Fig I. Cylindrical polar coordinates (r,8,x) are taken

aligned with the pipe, with the origin at the centre of the pipe orifice,

x directed out of the pipe and 8 measured from the pipe leeward generator.

Thus the pipe surface is given by r - I , x < 0 .

Since the cross-flow parameter c is small, it is assumed that near the

orifice the extension of .the pipe (r - 1, x > 0) can be used to separate the

representations of the flow. In equation (3-23) of Ref I the velocity potential

* in r > 1 is expanded formally in powers of e . This expansion may be

written as

*-Ax + 6~ + ±)o 8O *0 t[*r~x) + 2 (r,x)cos 28] + 0(d) , (1)

and the potential * in r < I is similarly expanded as:

* x + 2[ (r,x) + Z2 (r,x)cos 28 + o(E) (2)

Here *0 ' Z0 are functions giving the axially symmetric part of the solution,

which will not concern us further, and *2 Z2 give the part of the solution

depending on 6 , to this second order. In a smell change of notation from Ref 1,

a factor cos 20 has been taken out. 0

.... .. . ..-- n , i il - m a mi am i i



For the region inside the pipe, x .< 0 and r .< 1 , the solution for 2

is obtained from equation (3-36) of Ref 1 as:

where the summation is over the positive zeros Q of dJ2 (p)/dp zJ_(p) - 0

where J2 is the Bessel function of the first kind and second order. To define

K , we first introduce a function y(s) of the complex variable s

y - y(S) = lim (s + i0)(s - i
6-0+

where branch cuts are taken from ±i6 to ±i- , and the square-root branches are

chosen to have positive real parts for s real. Hence, when s = w is real,

y= . Then, from the equations (B-13), (B-16) and (B-15) of Ref 1:

f [12(y) _ 2K2(y)

K(s)= _ _ -xK ] (4)

F ~ (S). dw lm[y(wij(w) (521ri .W - li 2

21expF~j~
K(S) (+4 A) lim (6)

where the upper or lower signs are to be taken throughout. K is needed later.

Here I and K are modified Bessel functions of the first and second kinds2 2
respectively, and C+ , C are contours of integration lying respectively

below and above all singularities in the complex w-plane . In the following

section it emerges that the contours can be taken to lie along the real axis.

Finally, A is given as the quotient of two integrals:

A-- (7)
C2

____ _ __ ___
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ere ".iK(p).J'(p.Kip) 8)

0

o d (1 + X2)

in which, since p is real and positive, we have from (B-19) of Ref 1:

ii(p) - 2.Re i p (10)

where Re denotes the real part of a complex function, and for convenience, we

have introduced:

D(-ip) - I2(-ip)K (-ip) - )2K2 (-p)I'(-ip) (11)

We have used 12 (ip) = 12 (-ip) and I(ip) = - I (-ip), see Ref 2.

For the region inside the jet, x >, 0 and r .< 1 , the solution for Z2

is obtained from equation (3-38) of Ref 1, after correcting a misprint in the

sign of Ap ,as:

(r,x)  xr 12 p- . iK(p) .K (-ip).e-PX.(1 - Ap)

22 (1 + ) 0 p

....... (12)

For the region outside the jet, x >. 0 and r >. 1 , the solution for *2 is

obtained from equation (3-42) of Ref I as:

2 (r,x) A x

FI (, ' ,r( +X)

K2 (-ipr) t!
.2 Re .Kip i(-ip).il '(ip).e-Px.(1 Ap) (3) .

0 P

.4.!
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For the region outside the pipe, x < 0 and r >, 1 , the solution for 2 is

obtained from equation (3-40) of Ref I as:

K2~(-ipr) }ePx

(r -- . 2 .(0 + Ap) (14)

iffr2 0( + x 2 ) 0 p 12.'~ K( ip)

3 PRELIMINARY MANIPULATIONS

The Bessel functions, and modified Bessel functions, of orders 0 and 1

with real and positive arguments, are available as subroutines in the NAG Fortran

Library. To obtain the functions of order two, and their derivatives, we can

use the following properties given in Ref 2, which hold for integers v >. I

T
J (z) - -J (Z) -J (Z)15)
V+1 z v V-i

Y+(Z) -_Y (z) _ y_1(z) (16)
V+1 z V V1

T
I+(z) I (z) =A I(z) (17)

2

K + (z) K (z) + (18)

J'(z) (Z) - Jv+ (z)] (19)

Y'(z) " ZY ) - Yv+ (
Z

)] (20)

Also the Bessel functions are related to the modified Bessel functions by way of:

I (-iz) = (-i)v j (z) (21)

4K (-iz) " r (z) + i (z (22)o Lvv

[...
0 V 2
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Equations (3), (8), (9), (12), (13) and (14) show that we require Kt (ip)

and therefore F (±ip) , with p real and positive. In equation (5), taking the

plus sign and putting s - ip , gives the singularity at w = s in the upper

half w-plane so that C+ (which must lie below it) can be taken to be the real

axis; taking che minus sign and putting s - -ip , gives the singularity in the

lower half-plane, so that C (which must lie above it) can again be taken to be

the real axis. If p = 0 , the contour must be indented at the origin.

From equation (4), i(s) is a real and even function of real s , so

taking C± to be the real axis in equation (5) and taking upper or lower signs

throughout, we have: ddd

F (ip) t I f O I~ in wi)

d+ +/d'ln 2
V 0

_f dw rWKiw)
It 2 2 in (23)

0 + p

So F+(ip) and F_(-ip) are real and equal. We observe that as w-O+

y= Iw = w . Then, using the expansions of the Bessel functions for small

argument (see Ref 2) in equation (4), we find

lir + 42)

W-0

Similarly, using the expansions for large argument, we find

lim + X2

so the integral is convergent as w-.- in equation (23).
0

Equation (6) is now used to evaluate kt (ip) . We note that when s - ip

the app-opriate branch of (s + i6)i (with positive real part) is:

t I

AL.7 . ° -
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ei/4 (p + 6) e pi/4

as 6-0 , and when s = -ip the appropriate branch of (s - ic) is

e-ii/4 + e-iir/4pj

as 0: thus

Ki± (±ip) = *xJexp[F ±(±ip)] /PI (24)

The function iK(p) , given by equation (10), must also be written as a

real function of the real variable p for computing purposes. Differentiating

equations (21) and (22), putting v = 2 and z = p , we have

I;(-ip) - i.J(p) (25)

K -(-ip) 2 [(p) + iY(p) (26)

Substituting equations (21), (22), (25) and (26) into (11) and then into (10)

gives:

D(-ip) - A[(2 - ) 2j - +( 2 Y - A 2 J2Y 2 ) (27)

=228

iK(p) - - 2(JY 2 (28)

[(~2 4. 2 )JIY2

For brevity, we have dropped the argument p of the Bessel functions J2 (p), etc

on the right-hand sides. It also follows from equation (25) that in the integrand

in equation (13) the factor iI (ip) can be replaced by (-J1(p)]K .2
!'.iking use of the Wronskian relation

2 (29)
2Y2- 22 i-rp

_' .A . . . ..... .• ,,
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equations (27) and (28) are written:

D(-ip) - .(2 - i) 2 i T)-(0-~2j -Y (30)
2p

iK(p) 2 2 (2 2k2 (31)

When X = 1 , they simplify to:

D(-ip) - P (32)
p

iK(p) - - irp.J;(p) (33)

We remark that on the regional interface r I , x > 0 , the kinematic

boundary condition, see equation (3-28) of Ref 1, requires

ffi~x 7. (r,x) (34)

This relation can be verified from equations (12) and (13); we find on the way

that

2.Re - K2 (-ipr) i

3r D(-ip) rp.iK(p)

and then both sides of equation (34) are equal to -2Xx/(1 + X 2  + G2 , where

G 2 ,iK(p).J'(p).i (-ip).e -PX . - Ap) (35)

V2 I2 + A 2 ) 0 P-""

4



4 COMPUTATIONS

4.1 Zeros of J

For equation (3) we need to calculate and store the positive zeros Q ofn

J , which is given by equation (19) with v = 2 . We find the zeros by

successive iteration using Newton's method: if w is a current approximation

to a zero, the next approximation is

Using equation (19) again, we get:

J" ()- 2J2(J ) + J(W)]

The Bessel functions J2 3 ' 34 are calculated from equation (15) with

v = 1,2,3 in succession. The iteration is taken to have converged when

successive iterates differ by less than 2.5 x 10
- 5

. At convergence, J" is

conveniently available for use in equation (3).

The starting guess at the first zero is w = 3 . When a particular zero

0 has been found, mindful of the asymptotic formn

37w) _ _d+Y1 n w-7

we take w = n + n as the starting guess for the next zeio 
0
n+1 * The

asymptotic form of J2 follows from equation (19) and that of J given in

Ref 2.

To calculate typical values of p2 given by equation (3) on x = 0 to

graphical accuracy, we needed to compute as many as 400 zeros of J' for use
2

in the series.

4.2 Evaluation of K+(ip)

C1 For use (along with equation (24)) in the calculation of K+(ip) for

equation (3) we have to evaluate the integral (23) for F +(ip) at the zeros

4

z

I-l

N 4 i i i | I
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p = 0 n For use in equations (8), (9), (12), (13) and (14), noting that

K_(-ip) - K+(ip) , we must evaluate equation (23) over a range of positive values

of p . Leaving the origin p - 0 aside for the moment, we assume p > 0 , we

break the range of integration of w into two parts [O,p) , (p,.] and

subtract the logarithmic singularity at w - 0 thus:

F+(ip) - F1 + F2 + F3

where

F Pf dw2 In K(w)) -In
2 "P 2  2 2

02
p

F --- In

22 2 12

where G is Catalan's constant, G , 0.9159655942 .. Making the changes of

variable w - pW for FI  and =
f p/W for F3 , we get:

0 + 1

3 p W 2 + 1 + 2

0

F, whc now cotan thelpW siglrt"tw 0 cnbeeautdaayial

F 2 4 ( 
2 

)X

3 IT 2 2
W 1 1

0
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The notes following equation (23) imply that the logarithms in FI and F3
both go to zero as W-0 . F1 and F3 are evaluated independently, in adaptive

fashion, by the trapezium rule. The values obtained by using two and four

intervals in [0,1] are compared, and if they do not agree to within the

specified tolerance TOL - 10- 5 , the number of intervals is doubled until two

successive values do agree.

As one might expect, it is found that when p is small, FI needs only a

few subintervals, and when p is large, F3 needs only a few subintervals so

that no more work is done than is necessary, and also the program does not call

for values of w so large that the evaluation of K(w) fails when machine

limits are encountered.

The above procedure fails for p - 0 . However, equation (B-21) of Ref I

quotes the behaviour of i+(ip) for small p

K (ip) ++( 2)1 as p 0

This crend is confirmed by inspection of the values of K+ output for small

values of p . There is therefore no need to consider the integral equation (23)

at p = 0

For large values of p , from equation (23) F+(ip) - 0(1/p) (again con-

firmed numerically), and so from equation (24):

i+(ip) +X2)1 [1 + 0(~1] as p(36)

4.3 Evaluation of A from equation (7)

In equations (8) and (9) we first note the behaviour of the integrands

near p - 0 and as p--.

Near p - 0 , we can introduce the series expansions of J2 and Y2 into
2equation (31) to show that iK(p) - O(p ) and J (p) - O(p) . Also K+(ip) is

bounded. Hence the integrands of C and C are finite except for the term
-~1 2

O(p- ) of C2 which however is integrable and the integral can be evaluated
0 analytically.

4,4
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We know2 that, as p-:

J2 (p) - cos q

(37)

(p) - _L sin q

where q p - 5/4 ;also

J2,(p) _- sin q

YI!p) - cos q

Substituting into equation (28), we find:

2 . 2),, sin q (8

iK(p).J (p) - -2. sin 2  2 (38)
q + COSq

This function is periodic, non-positive and bounded, so for large P

r iK(p).J'(P)(p) . 0(P

p

*2 - o(i-)

by using equation (36). The integral equation (8) for C1 is therefore con-

vergent as p- . Also, from Ref 3, the mean value of the right-hand side of

equation (38) over a period n is:

2

so that, for large p , the mean value of iK(p).J(p).S+(ip) over a period of

length v is: 0

-
.- -
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2

Hence, for large p , in the integral (9) over a period of length 7 the terms

O(p-i) in the square bracket cancel, the subintegral over such a period is

O(p- 2) , for sufficiently large P the integral from P to - becomes a sum

of such subintegrals, convergent to a value O(P- f) , and so the integral (9)

for C is similarly convergent as p-M

The above argument establishes that the expressions (8) and (9)

for C and C2 are proper. We now turn to their evaluation, considering C1

first. The approach is to evaluate the integral

P/ iK(p).JZ(P).R+(ip) (39)

for a sequence of integer values of P and to extrapolate for the limit P-.

The range [0,P] is first divided into the unit intervals [0,1] , (1,2]

[P-1,P] . The integral over each of these unit intervals is evaluated by the

trapezium rule, using up to LNPU successive bisections, but stopping when two

successive estimates of the integral over the unit interval agree to within a

specified tolerance TOL. LNPU and TOL are adjustable program constants. In this
-5

way, with TOL set to 10 , the estimates of the integral (39) obtained with LNPU

equal to 4 and 5 were found to agree to five significant figures.

The effect of the upper limit P was studied, bearing in mind that the

truncated portion from P to infinity is expected to be O(P- ) . For X = I

the following values of equation (39) were obtained:

p 200 400 800 1600

C -1.430537 -1.489004 -1.530398 -1.559720

The limit of C as P- - can be estimated by Richardson's method. Suppose we

are given values of a function f = f(p) for p - P , 2P and 4P . Assuming-rP

an error term O(p ) , where r is an unspecified exponent, r is given by:

0 f -f
2 r  P 2P

f2P f 4P

.. . . . . . . .. .. . . . .. .... .. 2 . ' . . . .. . . . . . . .. .
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and then

2f 4P f 2P
2
r - 1

For P = 200 (the first three values in the Table), we obtain 2r = 1.41287

the last three give 2r = 1.41200 . So we can assume as expected that r - 1/2
rThen, extrapolating from the last two values with 2 . 1.4142 gives:

C1  = - 1.63050 (40)

We now turn to C2 as given by equation (9). The integral is only conditionally

convergent as p- , and if it were evaluated in the same way as C1 , we should

expect slow convergence O(P-iY as the upper limit P-..

From equations (37) and (38), for large p the integrand in equation (9) is

asymptotically

2 21
X_+_1_2_ X (sin 2p - 1) (41)

p +I A4sin 2q + cos 2q

The second term in the square bracket has mean value [-2/(X 2 
+ 1)] , so the

whole square bracket has zero mean and represents an oscillatory function with

period i .

The second term in the square bracket has the following further properties:

it is non-positive, and its curve touches the p-axis at p = 7/4 + Nr , where

N is an integer. The function

2
2(sin 2p-ij1 + ;.2 (i

also has all three properties listed above, and indeed coincides with the second

term when X = 1 . Therefore, for large p , the oscillatory behaviour of the

complete expression (41) resembles that of:
a

2 sin 2p 0

2 
w

( . ) -.
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and we expect to get better convergence as the finite outer limit P-- if we

subtract this from the integrand in equation (9). The subtrahend can be
3

integrated exactly
3
, and the expression for C2 becomes:

2

- ( + I dp iK(p).J_(p).K+(ip) + 2 - sin 2p)

To remove the singularity O(p-i) at the origin, we subtract another term:

2 e
-p

which has the same behaviour as the integrand as p , and is exponentially small
3

as p-o . Again the subtrahend can be integrated exactly
3
, and the expression

for C2  becomes:

C2  3( - X2) + 7dp LK(p) .J (p) .K (ip) + 2- 1 - sin 2p - e-P

...... (42)

The integrand now vanishes at the lower limit, and we can again use the trapezium

rule.

The integrand is still oscillatory, and so we evaluate C2 as a succession

of loops of alternately positive and negative area (above and below the p-axis).

The contributions from the loops are stored separately in a one-dimensional

array. A loop is deemed complete, and a new loop is started, when the integrand

changes sign between two integration points; the contribution to the integral

from these two points is split appropriately into a part which is accumulated

* ., into the now completed loop, and another which atarts the new loop. We expect

that the sum of an even number of these loops will show a more consistent trend

as P- than the result of cutting off the integration at fixed values of P

0 which would correspond to cutting off random fractions of either a positive or

negative loop.

'~~~~~' 4 ~ i ar•[ia•Il[ l



-I

IsI

To apply Richardson extrapolation to three partial sums of this alternating

series, we use the loop counter L as the variable. Taking the largest loop

number to be four times the smallest, which should itself be even, we stop the

summation at the largest multiple of 8 loops allowed by the outer limit P .

Setting P - 800 , and also putting A - I which corresponds to the special

case mentioned in the Introduction, we obtain the results shown in the Table:

L 126 252 504

C2 6.08846 6.14185 6.16526

These give:

2 2.2806, r = 1.189, c2  6.1835

Had we stopped short of P = 400 , the Table would have been:

L 64 128 256

C2  6.01206 6.08995 6.14276

which would have given:

2  1.4749, r - 0.561, C2  - 6.2540

Clearly Richardson extrapolation is somewhat uncertain, though r should

be heading for the value 1.5 . However, a run with P - 1600 produces the

following Table:

L 254 508 1016

C2  6.14231 6.16529 6.13653

C2 is not monotonic in this range, so Richardson's method fails altogether.

This may be a warning that the asymptotic behaviour has not yet been reached,

or it may be due to a lack of accuracy in the evaluation of C2 " In either

case, some caution is indicated. We propose for the P nount to take the

extrapolated value arising from P - 800 above: C2 - 6.1835 . From equations

(7) and (40), and this estimate for C2 , we get a tentative value:
'11
0

A " - 0.2637 (43)

- 715j7 .....
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4.4 The solution inside the pipe and inside the jet

We can now evaluate the sum (3) for r< 1 , x < 0 , and the integral (12)

for the region inside the jet r < I , x > 0 . On the line x - 0 , where the

exponential factors are all equal to unity, the results are likely to be least

accurate, but inspection of the computed results for equation (12) suggests that

for the integration outer limit P - 800 , they are accurate to at least three

significant figures so that we can expect them to be adequate for graphical

purposes. The sunation over the first 400 zeros of J2' in equation (3) should

give at least similar accuracy, since %40 ; 400w 1250

On this crucial interface, the two solutions should agree. Fig 2(a) shows

their behaviour there for X - 1 , and we can see that they do agree qualitat-

ively, but not quantitatively; the curve for p2 (x - 0-,r) (inside the pipe)

lies above that for Z2 (x - O+,r) (inside the jet).

An exercise was mounted to see whether the differences might be largely due

to a small error in evaluating A , which is a somewhat uncertain quantity in

view of the investigation reported in section 4.3. When (-A) is reduced by 0.01

to the value 0.2537, a qualitatively similar picture is obtained (Fig 2b) in

which the differences are reversed in sign and the curve for x - 0- now lies

below that for x - 0+ . At r - 0.8 , where the difference between the two

curves is greatest, linear interpolation of the differences produces a new value

A = - 0.25944 (44)

and the other values r = 0.1(0.1)1.0 yield consistent values of A which

differ by no more than 0.0003 , except for a value (-0.25846) at r = 0.1

where the difference between the two curves is too small for the interpolation

to be meaningful.

With A given by equation (44), the two curves for x - 0- and x - 0+

agree as shown in Fig 3. As a further check, extra values for r - 0.91(0.01)0.99

are plotted and also show good agreement. The increasing gradient towards r = 1

is to be expected since (Ref 1) the velocity field exhibits a square-root

singularity at the orifice lip.

It is disappointing that the value (44) of A required to ensure

a close match of the pipe and jet solutions differs by as much as 1.6% from the
0

best prior estimate, equation (43), of A . The difficulty appears to lie in the

calculation of CI and C2" For instance, if we reject the Richardson

LA.

4 ~.,

. j r
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extrapolation and use the values C -1.55972 and C2 " 6.13653 obtained with

the largest values of p (1600) and L (1016) used, we find A = -0.2542 ,

which is as far above equation (44) as equation (43) is below it. The discrepancy

therefore indicates that the analytic expressions given in Ref I are not con-

venient for numerical evaluation, but it does not suggest that they are in any

way inconsistent.

To demonstrate the relation between the solutions inside the pipe and

inside the jet, Fig 4 shows a contour map of 2 in the region -1 < x < 1

0 < r ,< 1 , with A given by equation (44); the contours vary smoothly across

the common boundary x - 0 . The contour values have been multiplied by 100 to
4

get three significant figures in the standard plotting package used. No contours

appear at the top left of the Figure because the disturbance velocity is almost

zero there. The contours at the bottom right have been omitted because the

velocity potential varies rapidly there and we wish to concentrate attention on

the interface region.

Data are supplied to the plotting routine at the nodes of the grid shown;

linear interpolation is used along the grid lines, and the contours are formed

from straight-line segments joining points on the grid lines. Near the orifice

lip this i. clearly inadequate, so the solution there has been computed at more

points and plotted on a scale ten times as large in Fig 5. Again the contours

cross the common boundary smoothly. The representation is still lacking in

detail near the lip, so a further enlargement by a factor of ten is shown in

Fig 6. Irregularities now appear near the interface at x = 0 . However, we

note that the contours in Fig 6 are approximately similar in shape, indicating

that the smallest-scale flow features are now being picked up. This scale is

remarkably small - the width of the region in Fig 6 is only 1% of the pipe radius.

As an indication of the significance of the different scales, we note the change

in direction of the equipotentials along the bottom of Figs 4 to 6. At x - 1

Fig 4, the equipotentials are approximately aligned with the pipe axis; at

x - 0.1 , Fig 5, they are approximately normal to the pipe axis, and at x - 0.01,

Fig 6, they are again more nearly aligned with the axis. Along the pipe wall,

r - 1 , x < 0 , the equipotentials are normal to the wall, in accordance with

the boundary condition, wherever the scale allows their proper representation.

We note, from the relatively wide spacing of the equipotentials towards

the top of Fig 4, that the disturbance caused by the external flow to the flow

in the pipe has decayed to a negligible level within one pipe radius upstream of

the orifice.

5".
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4.5 The solution on the jet boundary

We turn now to the solution on the jet boundary, represented in the present

linearized treatment by the half-cylinder r - 1 , x > 0 . It was shown at the

end of section 3 that the kinematic boundary condition is satisfied and that

8 2 2x +2

where G X iK(p).J,(p).i(-ip).ePx (1 -Ap) (35)

This expression is related to the jet shape, given by F(r,8,x) - 0 , by the

kinematic boundary condition VF.Vp = 0 , where

Sx + 2 (r,x) cos 28 + 0(E3 )

by equation (2), with the axially symmetric perturbation t0 omitted. If F is

expanded in the form

F(r,e,x) - r - I - 2 f(x cos 28 + 0( 3 )

the above kinematic boundary condition gives, to leading order in E

df
dx r

Hence the slope of the jet surface in a meridian plane, 8 - const. , is given by

2 df 2e2 x cos 20 4e2 G2 cos 28

e d.cos 28 (45)
2 +axx 1 X 2

to leading order in e

0

The first term on the right of equation (45) is the leading term in the

expansion of the solution given in section 3.1 of Ref 1 for the development of

.r
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the jet away from the imediate neighbourhood of the orifice. When x is large

enough for this term to dominate the second, equation (45) represents a flatten-

ing of the jet cross-section, increasing with distance from the orifice, produced

by a lateral expansion, for e near ±ir/2 , and a fore-and-aft contraction for

e near 0 and ±vr

Considering now the second term in equation (45), we note first that it is

positive for X - 1 , because the integrand in equation (35) is non-positive and

not identically zero for p real and positive. The product iK(p)J(p) ' 0 and

only vanishes at the zeros of J2 by equation (33). K_(ip) > 0 by equation (24)

since F_(-ip) is real by equation (23). The exponential is positive, and (1-Ap)

is positive because A is negative. The two terms on the right of equation (45)

are therefore opposed, and we shall see that the second term is dominant near

the orifice.

The integral in equation (35) closely resembles that in equation (12), so

G2 can be evaluated by a modified version of the code written to deal with

equation (12), provided that the integral is convergent. In fact, the change

from J2 in equation (12) to J' in equation (35) is unimportant, but the extra

factor p makes equation (35) divergent at infinity for x - 0 . Numerical

evaluation is therefore restricted to x > 0 . For A - I , the variation of

G2 with x is shown in Fig 7. We note first that it decays to zero as x

increases, so that equation (45) is consistent with the form found
I 
for the jet

away from the orifice. The rapid decay is consistent with the proportionality to
-3

x predicted by equation (3-39) of Ref 1 for the asymptotic behaviour as x-'.

The numerical solution provides the further information that, by x = I , ie half

a diameter from the orifice, the second term on the right of equation (45) is

only 1.35% of the first.

On the other hand, as x tends to zero G2 appears to increase without

limit, as would be expected from the comment above about the divergence of the

integral in equation (35). Hence, near the orifice the second term in equation

(45) dominates and 3r/3x therefore changes sign on r - 1 as x increases

from zero. The interpretation of this is discussed later.

The calculated behaviour of G2 as the orifice lip, r I , x = 0 , is

approached can be related to the analysis of Ref 1 in the following way. At the

end of Appendix B of Ref 1, the asymptotic expression is obtained:

a
. . . ...... " .. . .. ..... . .

, , i~ I !
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al 2 A x (46)3)r X 2 '

valid for r I 1- as x+O+ . Hence, for X - I , with A given by equation (44)

G2 - 0.1035 x-

Calculated values of G2 are used in the Table below:

x 0.1 0.05 0.02 0.01

G2  0.2215 0.3736 0.6661 0.9801

x G2 0.0700 0.0835 0.0942 0.0980

It is apparent that the value 0. 1035 from equation (46) is a plausible extrapol-

ation of the calculated values of xi G2

4.6 Singular behaviour at lip

Further analysis shows that the solution obtained in Ref 1 is two-

dimensional sufficiently near the lip of the pipe, as would be expected. The

singular behaviour is that of the planar incompressible potential flow round a

semi-infinite plate, in which the velocity potential is proportional to

01 sin(x12) , where pe i  is the complex coordinate relative to the plate edge

and -n < X < v , so that here pe - x + i(r - 1) . The streamlines of this

flow are sketched in Fig 8a. The constant of proportionality for the flow

inside the pipe and jet follows from equation (46), so that

- - (3.' 2A sin X .(47)

2 1 A 2

On the inside of the pipe, X = -n and o - -x , so

1+ 2

+ 2 A ) . (48)

This singular term makes no contribution to the velocity potential on the jet
0

boundary X = 0 , but a glance at Fig 6 shows that 2 varies noticeably along

this line, even close to the lip. We therefore write, as an approximation to
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2(1,x) for A 1 and for x near zero, the function Z2A where

0 ,x 0

100 ;2A 2.0728 - 0.4893 (100 x) - 2.0700 (-100 x)i x (49)

In this expression, the constant and linear terms are a fit to values of (2

computed for r - 1 and 0 4 100 x < 1 , and the coefficient of the fractional

power follows from equation (48) with X = 1 and A given by equation (44).

Fig 9 shows a plot of the asymptotic expression (49) with computed

values superimposed, for -1 < 100 x < I . It is not surprising that the regular

part of the solution is well represented by the two regular terms in equation (48)

as shown by the agreement for x > 0 , since the range of values of x is so

small. The agreement for x < 0 is less good, but supports the validity of

equation (47) and the determination of A for X - 1 . Outside of the pipe and

jet, an expression like equation (46) but with a factor X on the right-hand

side is quoted in Ref I for 1P2 ' so a similar treatment would be possible if we

were to evaluate the expression (13) and (14).

We have not calculated the variation of A with A . However, a simple

argument shows that A is never zero. By equation (7), if A is to vanish C1

must vanish; by equation (8) if C1  is to vanish the integrand of the integral

on the right must change sign; but by equations (23) and (24) K+(ip) is never

negative, and by equation (31) iK(p)Ji(p) is never positive, so the integrand

is never positive. Therefore A is non-zero and the flow singularity exists for

all values of X . We recall its dependence on e , the angular position round

the lip. Omitting T0  from equation (2), we have the velocity potential inside

the pipe and jet, close to x - 0 :

. x+ 2 (r,x) cos 2 + 0() . (50)

The singular behaviour therefore vanishes (at least to this order) for

e - ± r/4 , ± 3r/4 , but not elsewhere. A similar singular behaviour appears at

the sharp trailing-edge of a flat-plate aerofoil at incidence in the absence of

circulation; however, for the jet no eigensolution corresponding to the circulat- >

ory flow about the aerofoil seems to be available to allow a Kutta condition to 0

be satisfied at the lip.

i
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It appears therefore that the singularity is an essential feature of the

present treatment. Since this treatment is based on a linearization, it

represents a local inconsistency therein: disturbances assumed to be small

emerge as being unbounded. Moreover, the failure to satisfy a Kutta condition

implies that the solution is unacceptable, at least locally, as a limiting form

of a viscous flow in the limit of infinite Reynolds number. The view taken in

Ref 1 is that the breakdown of the solution at the lip is a local breakdown of

the linearization assumption, and that the difficulty can be resolved by the

solution of a non-linear problem near the lip. It is expected that a numerical

solution would be required and it is not clear that such a solution would exist.

Indeed, K'uchemann 5 6 suggests that the inviscid representation of the mixing of

uniform streams at different total pressures downstream of a splitter plate

involves a convoluted vortex sheet, as sketched on the right in Fig 10, in an

essentially time-dependent process. If that were so, it would have important

consequences for understanding and calculating the initial formation of the jet

in cross-flow.

The resolution of this difficulty requires further effort. For the moment,

we confine ourselves to an attempt to interpret the existing solution in as

meaningful a way as possible. From equation (50) we have, for the circumferential

component of velocity inside the pipe and jet, near the orifice:

2 22 z(rx) sin 20 + 0( 3 )  (51)

r 36 r 2'

Hence, particles lying in the two planes defined by 6 0 (and ±r ) and by

e - ± r/2 remain in those planes and it is instructive to sketch the streamlines

they follow. We concentrate on the neighbourhood of the lip and the case A = I

for which P2A ' as given by equation (49), is an adequate representation of

2 (1,x) , and consider 6 - w/2 . Then, writing B = 0.1035 , by equations (49)

and (50)

r1= ,e - £2[-0.4893 + B(-x)- ] (52)Jxr=1,8=n/2,x<O

inside the pipe. This expression vanishes at

0

B~24
X x -B 2E4~s'
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for £ << I . Since the circumferential and radial components vanish by

equation (51) and the boundary condition, the point x - x , r - 1-, 6 - /2

is a stagnation point of the flow. We note that it lies extremely close to the

lip. Downstream of the lip

__ 2 '2 (53)
r-1,-7r/2,x>O ar r=l,x>O

The contribution G2  to the derivative on the right is plotted in Fig 7. The

flow is therefore inward across the line r - I on a scale larger than x ,

and we are led to sketch a streamline pattern in the vicinity of the lip as in

Fig 8b. On a smaller scale the pattern of Fig 8a appears, and on a larger scale

the global flow in this, the lateral plane, is outwards, as discussed in Ref I.

It must be remembered that the present treatment is based on the assumption that

the two streams, of different total pressure, are separated by the stream surface

through the lip, supposed not to depart too far from the surface r 1 1 , x > 0

The flow of ambient fluid round the lip, even on a very small scale, as drawn

in Fig 8b, represents a significant violation of that assumption.

A slightly more consistent pattern is achieved by modifying the behaviour

at the stagnation point, as shown in Fig 8c. If the streamline forming the

boundary between the two streams leaves the pipe wall tangentially, the ambient

stream can stagnate at a pressure below the stagnation pressure of the jet.

Although we have not examined the flow outside the pipe and jet in the same

detail, it is to be expected that a stagnation point will occur on the outside

of the pipe at 6 - 0 (and i ), in the plane of the cross-flow, at a distance

from the lip similar to -x . In this case, illustrated in Fig 8d, the jet

fluid, at total pressure above ambient, flows outward round the lip and the

ambient flow stagnates. On the large scale, the flow in this plane is inwards,

as discussed in Ref 1.

The streamline pattern of Fig 8c is similar to that on the left of Fig 10,
from *' 5,6

which is taken from Kuchemann . In a discussion of various ways in which flows

involving edge singularities can be modified in order to satisfy a Kutta con-

dition, he suggests that the unrealistic jet flow on the left might be modified

to produce the flow on the right. This involves shedding a train of vortices,
represented by a rolled-up vortex sheet, from the lip, in an essentially unsteady

flow. It is not clear that the downstream growth of the vortices shown in Fig 10

is related to the satisfaction of the Kutta condition. As explained in Ref 7,



27

the growth conforms with the observed growth in the overall thickness of the

shear layer and would require a further mechanism to allow the vortices to grow

in strength as they are convected downstream.

We now look at the streamline pattern on the inside of the pipe just inside

the lip, ie on the scale of x 5

On the inside of the pipe, equation (50), with the approximation (49)

for $2 ' provides the velocity components which define the streamlines. The

pattern which emerges is established in the Appendix and illustrated in Fig 11,
2 2in terms of a stretched coordinate, - -x/6 , where 6 - Bc . Fig Ila shows

the pattern of the stretched streamlines in the limit of 6-N0 , and Fig lc shows

it for an unrealistically large value 6 1 0.4 . The similarity of these

pictures demonstrates that the pattern of stretched streamlines is almost

independent of 6 for the small values of 6 to which the present treatment

applies.

Assuming the behaviour of the flow on the outside of the pipe is

qualitatively the same, we can sketch the surface streamlines very near the

lip as in Fig 12. Here the pipe has first been cut along the windward generator,

e = ± , then unrolled flat, and then unfolded about the lip, x - 0 , to show the

internal and external flows together. The streamlines run smoothly round the lip,

the two flows colliding along a curve composed of elements similar to the stream-

line NS in Fig 11c. This curve has the behaviour of a three-dimensional separation
8line, as specified by Lighthill 8
, each element of it starting at a saddle point

2of separation at -x 6 , 8 = 0 , ±i7r/2 , ±i , and ending at a nodal point

of separation at x - 0 , 8 = ±w/4 , ±3r/4 . It is, of course, a surface

streamline of an inviscid flow, not a limiting streamline of a viscous flow, but

continuity still requires that the three-dimensional flow leaves the surface in

its neighbourhood. It thus takes over the role of the lip itself in the absence

of a Kutta condition. We must remember that the scale of this flow is extremely

small and that it arises from a solution which is not consistent on this small

scale.

Finally, to obtain some idea of the flow in the pipe transverse to its axis

we may consider the component of the velocity in such a transverse plane as

defining a 'secondary flow' and sketch the 'streamlines' of this 'flow'. We

must remember that they are not, of course, actual streamlines, nor even the

0 projections of actual streamlines. The radial and circumferential velocity

components are given, to leading order, by using equation (50):

__ _ _
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az 2 _2

V I a 2e 2 _ in2
Vr r 7e r 2e

Ve - - --- 2 sin 28

and so the equation governing the 'streamlines' is

r -2 tan 2. 2  -7-r- "

The essential properties of Z,(x,r) , for x 1 -0.? , may be deduced from

Figs 4 and 5, viz, 2 is negative, and

-;r < 0 for 0 < r < r0

-0 for r = 0 , r0 and 1

> 0 for r0  < r < 1

where r0 & 0.75 . These properties, together with a slightly more detailed

examination of the relative magnitudes of V2 and its derivative near r -=
are enough to establish the 'streamline' pattern shown in Fig 13. This indicates

that the secondary flow takes fluid from the neighbourhood of the plane of fore-

and-aft symmetry to the sides of the jet.

5 CONCLUSIONS

(1) Ref I presents analytical results for the flow of an inviscid incompressible

jet emerging from a circular pipe into a weak cross-flow. In particular,

expressions in the form of infinite series or integrals are provided for the

velocity potential in the four regions: inside the pipe, inside the jet and

outside both, upstream and downstream of the orifice plane. These expressions

are so involved that we are unable to verify analytically the continuity of the

pipe and jet solutions across the orifice. Careful numerical evaluations have

now verified the continuity of these solutions for the case in which the external 0

velocity component parallel to the pipe is equal to the pipe velocity (A 1).

Confidence in the solution obtained in Ref I is thereby increased.
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(2) Ref 1 showed that disturbances to the flow in the pipe decay exponentially

upstream of the orifice. The numerical solution shows that the decay is virtually

complete within one pipe radius.

(3) The influence of the orifice on the jet deformation decays only algebraic-

ally, according to Ref 1. However, its influence is down to 1.4% of the total

deformation within one pipe radius downstream of the orifice.

(4) The expressions given in Ref 1 are inconvenient for numerical evaluation.

(5) In Ref 1, it is shown that the solution obtained fails to satisfy a Kutta

condition of smooth outflow at the pipe lip whenever the quantity A is non-

zero. We show that A is never zero and that for the case X - 1 referred to

above it is large enough to affect the solution significantly.

(6) Consequently, the flow near the pipe lip should resemble the two-dimensional

potential flow round the edge of a semi-infinite flat plate. It emerges that this

flow behaviour occurs on an extremely small scale, and that it is embedded within

a markedly three-dimensional flow pattern.

(7) If there is no steady solution satisfying a Kutta condition, a significant

source of unsteadiness in real flows at high Reynolds number is apparent. It is

therefore important to attempt to resolve the breakdown of the linearized approach

by examining the problem near the lip on a smaller scale, as suggested in Ref 1.

0

1~
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Appendix

STREAMLINES ON THE PIPE SURFACE JUST INSIDE THE LIP

The velocity potential * inside the pipe close to x - 0 is given by

equation (50) and, introducing the numerical approximation equation (49) to 2

we obtain

* - x + o (0.02073 - 0.4893 x - 0.2070(-x) )cos 26 , (A-i)

to order E. Hence the dominant terms, for small x and small E , in the

axial and circumferential velocity components are:

a*/ax - 1 + B 2 (-x) - cos 26

(A-2)

a;/rae - a;/ae - - 0.4 Bc2 sin 2e

where B 9 0.1035 , as in section 4.6. The circumferential component is every-

where small, so the streamlines are nearly aligned with the pipe axis unless

the axial component is also small. The axial component can only be small if

cos 26 < 0 , ie, ir/4 < 161 < 37/4 . It is sufficient to consider the interval

1T/4 4 6 4 1r/2 , since the streamlines in the other 6-intervals (7/2 , 3r/4)

and (-3n/4 , -r/4) of interest follow from considerations of symmetry.

For brevity we introduce a small quantity

6 - Be2  ; (A-3)

and, to work on an appropriate length scale, we introduce

- 2 (A-4)

noting that >. 0 in the pipe. Then the velocity components are

/ax - 1+ cos 26

(A-5)
0

o a/a - 0.4 6 sin 2e

______ __t

I.InIll
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while the streamlines satisfy the differential equation

<de -(A-6)

Hence, along a streamline,

de . 62 d8 0.4 3 sin 26 (A-7)
dx : +cos 26

and we can regard this equation as defining 'stretched streamlines' in the (6,E)

plane.

In the (e,&) plane we can easily find the stretched streamlines for the

limiting case 6 - 0 , even though we cannot return to the physical (8,x) space

for 6 = 0 . We recall that e lies in the interval [w/4 , w/2] , so

sin 28 >, 0 and cos 2e .< 0 , and that 6 > 0 . Then the numerator of the

right-hand side of equation (A-7) tends to zero through positive values as 6-.0

while the denominator is negative for < -cos 28 , vanishes for = -cos 28

and is positive for i > -cos 28 . The stretched streamlines are therefore the

straight lines of constant 0 , on which de/d is zero, together with the curve

- cos 2 28 , on which the right-hand side of equation (A-7) is indeterminate.

These lines are drawn in Fig Ila, with arrows indicating the direction of flow

which follows from equations (A-5). It is to be expected that the stretched

streamlines for 6 non-zero, but small compared with unity, will resemble those

of Fig 1la.

We now seek more definite information about the streamlines for 0 < 6 << 1

It is helpful to locate and identify singular points of streamline patterns,

indicated by indeterminacy of the expression for the streamline slope, and

usually associated with stagnation of the flow. Inspection of equation (A-7)

shows the right-hand side becomes indeterminate for 8 = w/2 , & - 1 and for

e - n/4 , & - 0 . Further consideration shows there are no other singular points.

Reference to equation (A-5) shows that the first of these is a stagnation point,

with both velocity components in the surface of the pipe vanishing. Moreover,

if we expand about this point, writing 8 w n/2 - 8 , I - 1 - , with 8,>

small and of the same order, we find that dg/dZ - 1.6 63 5/Z 0

7-*
-. I . 4
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From first principles, or by consulting standard texts, it follows that the

point e - w/2 , I - 1 is a saddle point, at which the streamline directions are

along 8 - 0 , 8 -w/2 and along -0 1 I. It is labelled S in Fig 11c.

The second singular point at 8 - ir/4 , - 0 , labelled N in Fig lic, is not

a stagnation point, since 3 /ae is negative there. Expansion about the point

suggests that the local behaviour is essentially non-linear. With 8 = r/4 + ,

where 8 , « 1 , equation (A-7) gives

d9 _ 0.46 3 (A-8)

From this equation we find that there are again just two directions along which

stretched streamlines reach the point N , namely, along - 0 , when & - 48
2

and along 8 - 0.4 6 3 , when & >> 48Z. The point resembles a node, but

equation (A-8) does not seem to be equivalent to a linear system, so the standard

classification of singular points may not be applicable.

We now find a particular solution of equation (A-7), valid for 6 << I

which connects the two singular points S and N . We are guided by the solution

- cos2 28 for S - 0 shown in Fig Ila and repeated as the broken line in

Fig 11c. For convenience, let

cos 2e = - n , n >, 0

so that equation (A-7) becomes

d _ 2(-n - (A-9)
dii (1 2)

where a is another small parameter defined by

a = 1.6 63 = 1.6 B3 C , B + 0.1035 (A-10)

Then, if we assume an expression of the form

01

n 2 I + an(1 -n
2 (f 0 (r) + anf 1 (n) + a nlf 2 (n) + ... (A-11)

S. '..A! I,.;
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we have

-O 1- n(l 2)(0 + anf1 +0 2 n2 f 2+

+ 3/8 21 2( - n2 )2(fo + an + ) 5/16cL3n3(l n 2) 3(fo + ...)3 +

and

d/n- 2n + 2n(3 - 5n')(fo + an,+

3 r(1 7%/f +arf + + n 3(1 _-2(f + )
Hence, on introducing these expressions into equation (A-9) and equating the

coefficients of like powers. of a on the two sides of the equation, we find:

a 0f - 2

n: (3 -5n')fo + n - n 2)f; - f, - 3/4(1 n

i
3 
a
2: (3 5n2- + n(1- i

2 )f; + (I- n
2 )f, f2 - 3/2(1 - r'ff

+ 5/8(1I - n2) f 3

From the structure of this sequence of equations it appears that the functions

f0 . f I , f 2 ,..can be found sequentially and explicitly, and that each is a

polynomial in n 2 In particular

- Otn 2

f 2(29 94n' + 69rn4 )
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It is not obvious that equation (A-11) is a convergent series in a for

all n . We therefore regard it as an asymptotic expression and re-write it in

the form

" n2 + aF1 (n) + n2F2 (n) + a3F3((n) + ... (A-12)

1 2/
where F, 2n 3( - n 2 )

F2 -n ( 2( 13n
2
)

F3  . 2n I(, n2)(29 - 94n2 + 69n4)

The behaviour of these functions is illustrated in Fig 11b. Remembering that

the entire treatment depends on e being small compared with unity, we regard

e - 0.5 as the largest eligible value. Then, by equation (A-10), n a 3 x 10-5

is the largest eligible value of a , so the first two terms in equation (A-12)

are sufficient for present purposes.

In a graphical representation of the stretched streamlines, this particular

solution will be indistinguishable from the curve E - cos 26 if a is as

small as 3 x 10- 5 . In order to illustrate the structure of the stretched stream-

lines, an unrealistically large value of 0.1 is assigned to a , leading to the

particular streamline shown by the full line connecting S and N in Fig lc.

We can then sketch the stretched streamlines between this particular streamline

and the lip as shown in the Figure, noting that they leave the lip with infinite

slope, that 3/a8 is negative, that 3O/ax and therefore aO/a vanish on

the broken line, and that they cannot cross the particular streamline. The

stretched streamlines upstream of the particular streamline can be added, on the

basis that a /ax is positive and therefore a/a is negative, that ao/aG
is negative and much smaller in absolute value than a/a except close to the

particular streamline, and that they cannot cross the particular streamline.

The sketch in Fig lc is thus completed.

0n
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LIST OF SYMBOLS

a pipe radius

A /2 (A 0.26 for X - 1)

B constant (4 0.10 for X - 1)

CIC 2  constants, see equations (8) and (9)

D see equation (11)

F+, F_ see equation (5)

G2  see equation (35)
IV modified Bessel function of first kind and integral order v

J Bessel function of first kind and integral order v

K modified Bessel function of second kind and integral order v

see equation (4)

K+, K_ see equation (6)

K see equation (10)

p real variable

q p - 5ir/4

r distance from pipe axis, referred to pipe radius (also exponent
in Richardson's method)

s complex variable

x distance downstream of orifice plane

x ;/a

x s  value of x at stagnation point inside pipe

Y Bessel function of second kind and integral order v

a small parameter (1.6 63)

Be2 (also arbitrary small quantity)

£ratio of cross-flow speed to jet speed

e angular coordinate about pipe axis, measured from leeward >
Mgenerator
0

ratio of co-flow speed to jet speed

stretched axial coordinate, -x/62

___ _"_.-
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LIST OF SYMBOLS (concluded)

*(xr,e) velocity potential outside pipe and jet

Z(x,r,8) velocity potential inside pipe and inside jet

o(r,x) axisymmetric part of 0

0(r,x) axisymmetric part of 0

2
*2(rx) non-axisyumetric part of 0 , to order e

02(r,x) non-axisynnetric part of * , tO order 2

02A(X) numerical fit to 0 2 (I,x) , see equation (49)

complex variable
th

n positive zero of J2
n 2

0

II-

• ,,,. i n ll d lla N l| [ n ln S[
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Fig 3
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Fig 4 Contours of 1OOI*2 inside pipe and jet for x 1 , at values -4(0.25)-0.25



Fig S
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Fig 5 As Fig 4, detail near lip, -3.75(0.25)1.50



Fig 6
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Fig 7

0.98 v inside jet, r.l-

A outside jet, r.1+

0.8

0.7

0.6

0.5

0.2.

0.1

0." 0.2 0.3 0.41 0.5 0.6 0.7 0.8 X 0.3 1.0

Fig 7 Comparison of normal derivatives from solutions inside and outside jet on
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Fig 10
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Fig 10 Conversion of a flow with an edge singularity (left) into a flow satisfying
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Fig 11
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Figs 12&13
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